If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2=14d+49=0
We move all terms to the left:
d^2-(14d+49)=0
We get rid of parentheses
d^2-14d-49=0
a = 1; b = -14; c = -49;
Δ = b2-4ac
Δ = -142-4·1·(-49)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14\sqrt{2}}{2*1}=\frac{14-14\sqrt{2}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14\sqrt{2}}{2*1}=\frac{14+14\sqrt{2}}{2} $
| w+8/w^2-36=0 | | 8s+s+3s-8s=20 | | 6y=78+96 | | x^2-1.2x=1.44 | | F(x)=-4x+10 | | 4/1=12/y | | 1/2(4x+16=20 | | 2p-p+p+4p-5p=9 | | 5+5c=21 | | 2=8/f | | 4(5x-4)=4x+-18 | | 7n+4=9n-20 | | 2x+23=7x-40 | | x/14+8=7 | | 12x+85+20x-10=180 | | -5x^2+120=-40 | | x-(x•0.22)=776.1 | | 60=5(n+2) | | u=2(2u+1)-4 | | 585=35x-6 | | x-10+4x-10+x+2=180 | | (9x-18)=(10x-18) | | 5(r+19)=17 | | x+4+32=90 | | r+19/5=17 | | -x+26=-2 | | 0.9c+2.3c=-6.4 | | 2s+1=13 | | -2=v-10/6 | | 8=3(7a+5)+10 | | -2=v-10 | | -22=-9x+5 |